Getting Started

From OpenRocket wiki
Jump to navigation Jump to search

↑ Back to Contents

The current User's Guide is very much a work in progress, any help would be greatly appreciated!
If you'd like to contribute something, just hit the 'Edit' tab at the top.



In this section we have a look at how OpenRocket is organized, by analyzing in detail the structure of the user interface. We will also briefly mention the Example projects that are accessible from the File menu. After reading this section you will have a thorough understanding of how OpenRocket is structured, and will be ready to start designing a rocket of your own. If you already know how this program is organized, feel free to jump to Basic Rocket Design, the next section.


The User interface

The OpenRocket user interface is divided horizontally into four sections, the Main Menu (green); the Task Tabs (black); the Rocket Design, Motors & Configuration, and Flight Simulation Pane (red), and the Rocket Views Pane (blue).

UI of OpenRocket divided into four

Main Menu

Menu Item Description
File
02.04.01.File Menu.png
The File Menu is divided into five divisions by function, (1) file opening options; (2) file saving options; (3) import and export options; and (4) closing and (5) quitting options.
- New allows you to start a new project without closing the project that is currently open; you can have more than one project open at the same time. If you start a new project when you have not already started (made changes to) the current project, a new project will be opened and the empty project will be closed, leaving one project open.
- Open... allows you to open an *.ork file that you have previously saved on your computer.
- Open Recent opens a pull-down menu of recently opened filed from which you may choose one to reopen.
- Open Example allows you to select from and open an example project included with OpenRocket.
- Save saves the changes you have made to a project that you have opened or previously saved, without changing the current filename or location of the file.
- Save as... allows you to save the project you are working as a different filename and/or a different file location.
- Export as allows you to export the project you are working on to a different file format, such as a Rocksim 10 (.rkt) file.
- Save decal image allows you to save a decal image file used in your project (currently only the first decal). However, this option is not available until you actually add a decal to your project.
- Print design info... allows you to select elements to print or export to a *.pdf" file from a drop-down menu; such as the technical details of your rocket's components, templates for your rocket's fin sets, or even the design of your rocket.
- Close design exits the current project (you will be asked whether to save unsaved changes); close also exits OpenRocket if there are no other projects open.
- Quit exits OpenRocket, checking to ensure that you have saved or may save each open project.
Edit
OR.Guide.User Interface.04.02.File.png
The Edit Menu is divided into three types of operations, (1) undoing and redoing an action; (2) cutting, copying, pasting, and deleting components and text; and scaling the rocket and system preference.
Tools
OR.Guide.User Interface.04.03.File.png
The Tools Menu provides design tools which allow the user to analyze the effect of specific components, optimize particular rocket characteristics, create custom expressions for specialized to analysis, and a photo studio which displays the rocket in 3D with a variety of backgrounds and effects.
Help
OR.Guide.User Interface.04.04.File.png
The Help Menu is divided into three sections, (1) guided tours demonstrating the use of OpenRocket; (2) bug reporting and debugging tools to assist users provide feedback to the developers; and (3) licensing and version and other general information about OpenRocket.

← Go to The User interface



Task Tabs

The windows shown below utilize the A simple model rocket example included with OpenRocket.

Rocket Design
01.02.Rocket Design.Tab.png
The Rocket Design tab is divided into three sections, the component tree, component arrangement buttons, and component selection buttons. The components available in OpenRocket are divided into four classes based upon component function. These classes are assembly components, body components and fin sets (external components), internal components, and mass components (which include electronics and recovery components). Components are greyed out until it would be appropriate to add that component type. As components are added, you will see the component tree (on the left side of the window, grow with each component added. For a detailed description of each component, see Component Details.

Motors & Configuration
02.02.Motor-Configuration.Tab.png
The Motors & Configurations tab is where you select motors, recovery events, and stage timing. Motor configuration options include creating new configurations, renaming existing configurations, removing (deleting) configurations, and copying configurations. With a specific configuration selected, you may select (or select a different) motor, remove the motor, or select and reset the motor ignition timing. For more motors and configuration utilization details, see Motors & Configuration Details.

Flight Simulations
03.02.Flight simulations.Tab.png
The Flight Simulations tab is where you manage and flight simulations and flight simulation plots. From here, you can add new simulations, or edit, run, or delete existing simulations. Select a single simulation, and you can even plot and export the simulation results. For more details on ow to use these functions, see Flight Simulations Details.


← Go to Main Menu



Rocket Views

The windows shown below utilize the A simple model rocket example included with OpenRocket.

The Top View, Side View, and Back View are line drawings, similar to a blueprint that shows all of the rocket components and the placement of those components. Almost all of your design work will take place in the top, side, and back views.
Top/Side/Back View
Getting Started.Rocket Views.Top View.jpg
Getting Started.Rocket Views.Side View.jpg
Getting Started.Rocket Views.Back View.jpg

The 3D Figure and 3D Unfinished view allow you to look through the rockets exterior to view many of the interior components. These views can help you more clearly see the relationship between the placement of different components inside the airframe.
3D Figure/3D Unfinished
Getting Started.Rocket Views.3D Figure.jpg
Getting Started.Rocket Views.3D Unfinished.jpg

The 3D Finished view shows you what the rocket will look like when finished. OpenRocket allows you to select component colors, inside and outside of outer tubes, right side or left side of fins, and even creating transparent components, all with or without decals (transparent or opaque).
3D Finished
Getting Started.Rocket Views.3D Finished.jpg

← Go to Task Tabs



Become Familiar with OpenRocket

For new users of OpenRocket, before attempting to create your own custom rocket design, it is strongly recommended that you become familiar with the OpenRocket user interface and generally accepted rocket design principles by opening and looking at how an example is assembled, making changes to the example, and understanding how to simulate flights. The example designs are found here:

File → Example... →
2023.01.Open Example.png

← Go to Rocket Views



The Basics of Using OpenRocket

Rocket Configuration

To build your first rocket, start OpenRocket, then double click the Rocket label at the top of the component tree to open the Rocket configuration pop-up window. OpenRocket allows you to name your design, identify the designer, make comments, and create a revision history.

The default design name is Rocket, but that name can be changed, and a design name change also changes the name of the rocket shown on the component tree. So, rename your design and enter the designer, comments, and revision history information you desire.

Double-Click Rocket
04.01.02.Rocket Configuration.png
Rename Rocket
04.01.05.Rocket Configuration.Rename.png

← Go to Become Familiar with OpenRocket



Adding External Components

Now it's time to start putting together components to build the rocket design. The generally accepted way of putting together a rocket design is from top to bottom, from nose to tail. So, we'll add the nose cone first.

Selecting a Nose Cone

With the Stage selected, click on the Nose Cone button and the Nose Cone configuration window will pop up. Then, select From database... to open the Choose component present window. From here, you can select from the pre-loaded parts database. Select the nose cone shown below, and click the Close button, then close the Nose Cone configuration window.

Selecting a Nose Cone
11.01.03.Rocket Build.Nose Cone.png
11.01.10.Rocket Build.Nose Cone.png
Nose Cone Added
11.01.11.Rocket Build.Nose Cone.png

Congratulations, you've just added your first component.


Adding a Payload Bay

So that a few "appearance" can be demonstrated later, a payload bay will be added after the nose cone. To do this, with either the Stageor Nose Cone selected, click on the Body Tube button and the Body Tube configuration window will pop up. Then, select From database... to open the Choose component present window. From here, you can select from the pre-loaded parts database. Select the body tube shown below, and click the Close button, then close the Body Tube configuration window.

Add a Body Tube
11.02.01.Rocket Build.Payload Bay.png
11.02.05.Rocket Build.Payload Bay.png
Payload Bay Added
11.02.06.Rocket Build.Payload Bay.png


Adding a Transition

Transitions are most often used to connect body tubes with different diameters. But, a transition can also be used to connect two body tubes of the same diameter, as will be done here.

To do this, with either the Stage or Payload Bay selected, click on the Transition button and the Transition configuration window will pop up. The default Transition Configuration tab is the General tab. On this tab, change your entries in the circled areas below to match the entries shown. Then, click the Shoulder tab, and change your entries in the circled areas below to match the entries shown. Then, click the Close button.

Add a Transition
11.03.01.Rocket Build.Transition.png
Change Specifications
11.03.06.Rocket Build.Transition.png
Transition Added
11.03.07.Rocket Build.Transition.png


Adding a Body Tube

Now, do what you did to add the Payload Bay, above, but select this body tube from the parts database:

Add a Body Tube
11.04.01.Rocket Build.Body Tube.png
Body Tube Added
11.04.02.Rocket Build.Body Tube.png


Adding Fins

The bottom component are the fins. OpenRocket offers four types of fins, Trapezoidal, Elliptical, Free Form, and Tube Fins. For this design, Trapezoidal fins will be used.

With the Body Tube selected, click on the Trapezoidal fins button and the Trapezoidal Fin Set configuration window will pop up. On your default General tab, change your entries match the entries shown. Then, click click the Close button.

Select Fin Type
11.05.01.Rocket Build.Fins.png
Select Fin Type
11.05.02.Rocket Build.Fins.png


Fins attach to another component, in this case the Body Tube. As circled below, the fins are shown underneath the Body Tube on the component tree.

Fins Added
11.05.03.Rocket Build.Fins.png


Adding a Launch Guide

OpenRocket includes two styles of launch guides, Rail Buttons and a Launch Lug. Because of the diameter of the body tube, a Launch Lug will be used for this design. As with fins, launch guides attach to another component, in this case the body tube.

You should now be able to open the Launch Lug configuration window without assistance. So, open your Launch Lug configuration window, and change the specifications to match those shown below.

Launch Lug Specifications
11.06.02.Rocket Build.Launch Lug.png
Launch Lug Added
11.06.03.Rocket Build.Launch Lug.png



← Go to Rocket Configuration



Adding Internal Components

Selecting a Parachute and Shock Cord

Adding a Parachute
11.07.03.Rocket Build.Parachute.png
Adding a Shock Cord
11.08.01.Rocket Build.Parachute.png
Parachute and Shock Cord Added
11.08.02.Rocket Build.Parachute.png


Selecting an Engine Block

Adding an Engine Block
11.09.01.Rocket Build.Engine Block.png
Engine Block Added
11.09.02.Rocket Build.Engine Block.png



← Go to Adding External Components



Viewing Your Design

Basic Views


With the airframe complete, you can view your design in either 2D (as above) or three 3D views. The most commonly used of which are 3D Unfinished and 3D Finished
.

3D Unfinished View
11.06.03.Rocket Build.3D Unfinished.png
3D Finished View
11.06.04.Rocket Build.3D Finished.png


Adding Appearance Settings


When changing Appearance settings, it is best to be in the 3D Finished pane so that you can see the changes that you are making. So, let's start by changing the view to 3D Finished.

3D Finished View
11.06.04.Rocket Build.3D Finished.png


Changing Color


The first change that will be made is to select the color for and change the color of the nose cone. Double-click on the nose cone in the parts tree to open the Nose Cone configuration window, then select the Appearance tab.

Nose Cone Appearance
12.10.01.Rocket Build Appearance.Nose Cone.png

Now, uncheck the Appearance Use default box. Then, Click on the Color box to open the Chose color window. Select the color of your choice (purple will be used here). Click OK to use your selection, then Close the Nose Cone configuration window.

Change Nose Cone Color
12.10.05.Rocket Build Appearance.Nose Cone.png
Nose Cone Color Changed
12.10.06.Rocket Build Appearance.Nose Cone.png

Repeat those steps for the Transition, Body Tube, Trapezoidal Fin Set, and Launch Lug; body tubes, launch lugs, and fins also have a Texture that will need to be set to none.

12.10.07.Rocket Build Appearance.Nose Cone.png

Now for a little magic. Open the Payload Bay appearance tab, uncheck the Appearance Use default box, and set the Texture to none. Then, click on the Color box to open the Choose color window. Click on a light blue color (the box shown with the X below), then click OK. Now, set the Opacity to 20% and close the Payload Bay configuration window, and yoy have a transparent payload bay.

12.10.11.Rocket Build Appearance.Nose Cone.png
12.10.12.Rocket Build Appearance.Nose Cone.png



← Go to Basic Views



Adding Decals

One last bit of magic, let's apply a decal to the transparent Payload Bay.

But, before beginning, save this image to your device.

Decal
12.10.13.Rocket Build Appearance.Decal.png


With the decal saved to your device, you're ready to start.
Select Decal from File Open the Payload Bay configuration window and select the Appearance tab. Click on the Texture type to activate the selection drop-down, and select From file.... Now, navigate to where you saved the decal, and select it.

12.10.16.Rocket Build Appearance.Payload Bay.Decal.png

To size and position the decal, first change the Repeat type to Sticker (you only want one symbol on the Payload Bay), then change the "Scale and Offset "x" and "y" values to those shown below.

Decal Type, Size and Position
12.10.19.Rocket Build Appearance.Payload Bay.Decal.png
12.10.20.Rocket Build Appearance.Payload Bay.Decal.png

And, there you have it. A decal on a transparent payload bay.


So, let's see what you've learned, and extend your knowledge. See is you can follow the screens below without any instructions.

Decal
12.10.21.Rocket Build Appearance.Fins.png


Save this image to your device
Split the Fins
12.11.03.Rocket Build Appearance.Fins.png

After splitting the fins, SAVE AND REOPEN THE DESIGN FILE, then view in 3d Finished.
Change Appearance of Fin #2 and Fin #3
12.11.11.Rocket Build Appearance.Fins.png

12.11.12.Rocket Build Appearance.Fins.png



← Go to Changing Color



Viewing in Photo Studio


So, what will this bird look like in Flight? To really find that out, you need to add a motor first.

Selecting a Motor

Motors & Configuration tab Select the Motors & Confirguration tab, then make sure that the correct motor tube is selected before clicking New Configuration.

12.12.02.Rocket Build Motor.png
Select a Rocket Motor
When you select New Configuration, the Select a rocket motor window opens. For this example, select the Estes D-12-7, then click OK.

12.12.03.Rocket Build Motor.png
Select Flight Configuration Now, select the D-12-7 as the Flight Configuration, and you're ready to go to the Photo Studio.

12.12.05.Rocket Build Motor.png

Flying in Photo Studio

Open Photo Studio Are you ready to see your rocket fly? The, open Photo Studio.

12.12.01.Rocket Build Photo Studio.png
Select a Rocket Motor
Here it is.

12.12.02.Rocket Build Photo Studio.png
Flame Effect
So why did you need a motor? Because, you can't create flames without it.

12.12.03.Rocket Build Photo Studio.png


Now, experiment to your heart's content.



← Go to Adding Decals